Penalized Mahalanobis Distance

Theoretical Justification

Let X be $n \times p$ dimensional matrix with n > p. The primary interest is the distances between the columns of the matrix X using the correlation structure between the rows of the matrix X. The singular value decomposition (SVD) for X has the form USV^T . Here $UU^T = I$ and $VV^T = I$ are the orthogonal matrices of dimension $n \times n$ and $p \times p$ respectively. The matrix S has dimension $n \times p$ and has non-zero elements only on diagonal when row indexes are equal to column indexes. The rank of S is equal to the rank of S. Also let S0 be a spectral decomposition (SD) of S1. The matrix S1 is a square diagonal matrix with dimension S2. The relationship between two decompositions is the following:

$$XX^{T} = [USV^{T}][USV^{T}]^{T} = USV^{T}VS^{T}U^{T} = USS^{T}U^{T} = UDU^{T}$$
(1)

Since n > p, the number of non-zero diagonal elements can be at most p. The relationship between two decompositions imply $\mathbf{S}\mathbf{S}^T = \mathbf{D}$. The diagonal elements in \mathbf{S} are not defined uniquely since the sign in SVD can be arbitrary. The diagonal elements of \mathbf{D} however are defined uniquely and are all non-negative for non-negative definite matrices such as $\mathbf{X}\mathbf{X}^T$. We use the notations d_i and s_i^2 where $i=1,2,\ldots,n$ for diagonal elements of \mathbf{D} and $\mathbf{S}\mathbf{S}^T$ respectively. The values $|s_i|$ are called singular values of the matrix \mathbf{X} and they are related to eigenvalues d_i of matrix $\mathbf{X}\mathbf{X}^T$ using relationship $d_i = s_i^2$.

If we assume that matrix XX^T is invertible (i.e. n < p and row space has a full rank, which is *not* the case for our matrix) then all d_i -s are positive and the inverse matrix $[XX^T]^{-1}$ has the form

$$\left[\boldsymbol{X}\boldsymbol{X}^{T}\right]^{-1} = \boldsymbol{U}\boldsymbol{D}^{-1}\boldsymbol{U}^{T} = \boldsymbol{U}\left[\boldsymbol{S}\boldsymbol{S}^{T}\right]^{-1}\boldsymbol{U}^{T}$$
(2)

where

$$oldsymbol{D}^{-1} = \operatorname{diag}\left[rac{1}{d_1}, rac{1}{d_2}, \dots, rac{1}{d_n}
ight]$$
$$\left[oldsymbol{S}oldsymbol{S}^T
ight]^{-1} = \operatorname{diag}\left[rac{1}{s_1^2}, rac{1}{s_2^2}, \dots, rac{1}{s_n^2}
ight]$$

For the considered matrix X with dimensions $n \times p$ with n > p the matrix XX^T does not have a full rank and is *not* invertible. In this case the SVD decomposition of the inverse (2) does not make sense.

To fix that the penalty is introduced. The idea is to add penalty to the original matrix $\boldsymbol{X}\boldsymbol{X}^T$ to make it invertible. The suggested matrix is $\boldsymbol{X}\boldsymbol{X}^T + \lambda \boldsymbol{I}$ and the corresponding inverse has the form

$$[\boldsymbol{X}\boldsymbol{X}^{T} + \lambda \boldsymbol{I}]^{-1} = [\boldsymbol{U}\boldsymbol{D}\boldsymbol{U}^{T} + \boldsymbol{U}(\lambda \boldsymbol{I})\boldsymbol{U}^{T}]^{-1}$$

$$= \boldsymbol{U} \left[\operatorname{diag} \left[\frac{1}{d_{1} + \lambda}, \frac{1}{d_{2} + \lambda}, \dots, \frac{1}{d_{n} + \lambda} \right] \right] \boldsymbol{U}^{T}$$

$$= \boldsymbol{U} \left[\operatorname{diag} \left[\frac{1}{s_{1}^{2} + \lambda}, \frac{1}{s_{2}^{2} + \lambda}, \dots, \frac{1}{s_{n}^{2} + \lambda} \right] \right] \boldsymbol{U}^{T}$$

The matrix $\boldsymbol{X}\boldsymbol{X}^T + \lambda \boldsymbol{I}$ is invertible and the inverse $[\boldsymbol{X}\boldsymbol{X}^T + \lambda \boldsymbol{I}]^{-1}$ exists provided $\lambda \neq 0$. The question is how to select appropriate penalty λ ? Intuitively, the smallest eigenvalues d_i are the least important ones. Those values experience maximal shrinkage d_i and the largest values of $\frac{1}{d_i}$ which degenerates to ∞ when $d_i = 0$. To follow the logic the reasonable choose is to shrink based on the smallest d_i in the dataset which is *not* equal to 0. That implies

$$\lambda := \min \left\{ d_i : d_i \neq 0 \right\}.$$

The approach tends to produce the results when all distances become very similar i.e. the penalty is to severe to see the difference b/w the samples. The more general alternative will be to use some rescaling

$$\lambda := \min \left\{ d_i \gamma : d_i \neq 0 \right\}$$

where scaling constant $\gamma \in (0;1]$. The suggested choice is to use the median \tilde{d} of all non-zero eigenvalues as a penalty:

$$\lambda := \tilde{d} = \text{median} \left\{ d_i : d_i \neq 0 \right\}.$$

Suggested Computation Algorithm

The algorithm has to be outlined as follows.

- 1. Standardize the matrix X for variance computation i.e. compute the differences $[X \bar{X}_R]$ where \bar{X}_R is $n \times p$ dimensional matrix where every element is replaced by row average of the original matrix X.
- 2. Compute singular value decomposition of $[X \bar{X}_R]$. The decomposition has the form

$$[\boldsymbol{X} - \bar{\boldsymbol{X}}_R] = \boldsymbol{U}_c \boldsymbol{S}_c \boldsymbol{V}_c^T \tag{3}$$

where subscript c emphasizes that is is for the *centered* matrix $[X - \bar{X}_R]$. The variance estimate has the form

$$\hat{\boldsymbol{\Sigma}} = \widehat{\text{Var}(\boldsymbol{X})} = \frac{1}{p-1} [\boldsymbol{X} - \bar{\boldsymbol{X}}_R] [\boldsymbol{X} - \bar{\boldsymbol{X}}_R]^T$$

- 3. Define the penalty $\lambda := \min\{d_i \gamma : d_i \neq 0\}$ where γ is a user-defined penalty parameter and d_i -s are diagonal elements of $\mathbf{D}_c = \mathbf{S}_c \mathbf{S}_c^T$.
- 4. Compute the estimate of the penalized sigma $\hat{\Sigma}_{\lambda}^{-1}$

$$\hat{\boldsymbol{\Sigma}}_{\lambda}^{-1} = (p-1) \left[[\boldsymbol{X} - \bar{\boldsymbol{X}}_R] [\boldsymbol{X} - \bar{\boldsymbol{X}}_R]^T + \lambda \boldsymbol{I} \right]^{-1}$$

$$= (p-1) \boldsymbol{U}_c \left[\operatorname{diag} \left[\frac{1}{d_1 + \lambda}, \frac{1}{d_2 + \lambda}, \dots, \frac{1}{d_n + \lambda} \right] \right] \boldsymbol{U}_c^T$$
(4)

5. Compute the Mahalnobis distance using the penalized estimate (4). The Mahalanobis distance for individual columns X_1 and X_2 of X is denoted as $\hat{d}_M(X_1, X_2)$ and has

the form

$$\hat{d}_M(\boldsymbol{X}_1, \boldsymbol{X}_2) = \sqrt{\left[\boldsymbol{X}_1 - \boldsymbol{X}_2\right]^T \hat{\boldsymbol{\Sigma}}_{\lambda}^{-1} \left[\boldsymbol{X}_1 - \boldsymbol{X}_2\right]}$$
 (5)